Deep learning

Software libraries https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software Main article: Comparison of deep learning software Deeplearning4j — An open-source deep-learning library written for Java/C++ with LSTMs and convolutional networks. It provides parallelization with Spark on CPUs and GPUs. Gensim — A toolkit for natural language processing implemented in the Python programming language. Keras — An open-source deep learning framework for … Continue reading «Deep learning»

Software libraries

https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

  • Deeplearning4j — An open-source deep-learning library written for Java/C++ with LSTMs and convolutional networks. It provides parallelization with Spark on CPUs and GPUs.
  • Gensim — A toolkit for natural language processing implemented in the Python programming language.
  • Keras — An open-source deep learning framework for the Python programming language.
  • Microsoft CNTK (Computational Network Toolkit) — Microsoft’s open-source deep-learning toolkit for Windows and Linux. It provides parallelization with CPUs and GPUs across multiple servers.
  • MXNet — An open source deep learning framework that allows you to define, train, and deploy deep neural networks.
  • OpenNN — An open source C++ library which implements deep neural networks and provides parallelization with CPUs.
  • PaddlePaddle — An open source C++ /CUDA library with Python API for scalable deep learning platform with CPUs and GPUs, originally developed by Baidu.
  • TensorFlow — Google’s open source machine learning library in C++ and Python with APIs for both. It provides parallelization with CPUs and GPUs.
  • Theano — An open source machine learning library for Python supported by the University of Montreal and Yoshua Bengio’s team.
  • Torch — An open source software library for machine learning based on the Lua programming language and used by Facebook.
  • Caffe – Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Center (BVLC) and by community contributors.
  • DIANNE – A modular open-source deep learning framework in Java / OSGi developed at Ghent University, Belgium. It provides parallelization with CPUs and GPUs across multiple servers.

Chicago Transims Evacuation

Uploaded on Jun 23, 2011
A collection of clips showcasing the downtown Chicago buildings, a normal day case simulation at 20% load, and a preliminary evacuation from the area (Evacuees are the purple cars).

Uploaded on Jun 23, 2011
A collection of clips showcasing the downtown Chicago buildings, a normal day case simulation at 20% load, and a preliminary evacuation from the area (Evacuees are the purple cars).

IT service management

COBIT versus ITIL April 6, 2014 By Stephen.Ibaraki Microsoft MVP Enterprises need to govern and manage their information and related technology assets and resources, and those arrangements customarily include both internal and external services to satisfy specific stakeholder needs. COBIT 5 aims primarily to guide enterprises on the implementation, operation and, where required, improvement of their … Continue reading «IT service management»

COBIT versus ITIL

Enterprises need to govern and manage their information and related technology assets and resources, and those arrangements customarily include both internal and external services to satisfy specific stakeholder needs. COBIT 5 aims primarily to guide enterprises on the implementation, operation and, where required, improvement of their overall arrangements relating to governance and management of enterprise IT (GEIT). ITIL provides guidance and good practice for IT service providers for the execution of IT service management from the perspective of enabling business value.

COBIT 5 describes the principles and enablers that support an enterprise in meeting stakeholder needs, specifically those related to the use of IT assets and resources across the whole enterprise. ITIL describes in more detail those parts of enterprise IT that are the service management enablers (process activities, organizational structures, etc.).

Generally speaking:

· COBIT is broader than ITIL in its scope of coverage (GEIT). It is based on five principles (meeting stakeholder needs; covering the enterprise end to end; applying a single, integrated framework; enabling a holistic approach; and separating governance from management) and seven enablers (principles, policies and frameworks; processes; organizational structures; culture, ethics and behavior; information; services, infrastructure and applications; people, skills and competencies).

· ITIL focuses on ITSM and provides much more in-depth guidance in this area, addressing five stages of the service life cycle: service strategy, service design, service transition, service operation and continual service improvement.

Also, COBIT and ITIL are well aligned in their approach to ITSM. The COBIT 5 Process Reference Model, as documented in COBIT 5: Enabling Processes, maps closely to the ITIL v3 2011 stages.

The distinction between the two is sometimes described as “COBIT provides the ‘why’; ITIL provides the ‘how.’” While catchy, that view is simplistic and seems to force a false “one or the other” choice. It is more accurate to state that enterprises and IT professionals who need to address business needs in the ITSM area would be well served to consider using both COBIT and ITIL guidance. Leveraging the strengths of both frameworks, and adapting them for their use as appropriate, will aid in solving business problems and supporting business goals achievement.

Root your Android 4.4 KitKat

How to Root your Android 4.4 KitKat device using TowelRoot Step 1: Head over to TowelRoot.com and click on the lambda icon to download the TowelRoot app. Step 2: Install the TowelRoot app on your phone and open it. Tap on “ Make it Ra1n” and wait for a few seconds for the app to root … Continue reading «Root your Android 4.4 KitKat»

How to Root your Android 4.4 KitKat device using TowelRoot

Step 1: Head over to TowelRoot.com and click on the lambda icon to download the TowelRoot app.
Step 2: Install the TowelRoot app on your phone and open it. Tap on “ Make it Ra1n” and wait for a few seconds for the app to root your phone.

installing-towelroot

Agile management

Agile management, or agile process management, or simply agile refer to an iterative, incremental method of managing the design and build activities for engineering, information technology, and other business areas that aims to provide new product or service development in a highly flexible and interactive manner; an example is its application in Scrum, an original … Continue reading «Agile management»

Agile management, or agile process management, or simply agile refer to an iterative, incremental method of managing the design and build activities for engineering, information technology, and other business areas that aims to provide new product or service development in a highly flexible and interactive manner; an example is its application in Scrum, an original form of agile software development.[1] It requires capable individuals from the relevant business, openness to consistent customer input, and management openness to non-hierarchical forms of leadership. Agile can in fact be viewed as a broadening and generalization of the principles of the earlier successful array of Scrum concepts and techniques to more diverse business activities. Agile also traces its evolution to a “consensus event”, the publication of the “Agile manifesto“, and it has conceptual links to lean techniques, kanban (????(??)?), and the Six Sigma area of business ideas.[1]

Agile X techniques may also be called extreme process management. It is a variant of iterative life cycle[2] where deliverables are submitted in stages. The main difference between agile and iterative development is that agile methods complete small portions of the deliverables in each delivery cycle (iteration)[3] while iterative methods evolve the entire set of deliverables over time, completing them near the end of the project. Both iterative and agile methods were developed as a reaction to various obstacles that developed in more sequential forms of project organization. For example, as technology projects grow in complexity, end users tend to have difficulty defining the long term requirements without being able to view progressive prototypes. Projects that develop in iterations can constantly gather feedback to help refine those requirements. According to Jean-Loup Richet (Research Fellow at ESSEC Institute for Strategic Innovation & Services) “this approach can be leveraged effectively for non-software products and for project management in general, especially in areas of innovation and uncertainty. The end result is a product or project that best meets current customer needs and is delivered with minimal costs, waste, and time, enabling companies to achieve bottom line gains earlier than via traditional approaches.[4] Agile management also offers a simple framework promoting communication and reflection on past work amongst team members.[5]

Agile methods are mentioned in the Guide to the Project Management Body of Knowledge (PMBOK Guide) under the Project Lifecycle definition:

Adaptive project life cycle, a project life cycle, also known as change-driven or agile methods, that is intended to facilitate change and require a high degree of ongoing stakeholder involvement. Adaptive life cycles are also iterative and incremental, but differ in that iterations are very rapid (usually 2-4 weeks in length) and are fixed in time and resources.[6]

Tor

Tor is free software for enabling anonymous communication. The name is an acronym derived from the original software project name The Onion Router,[7] however the correct spelling is “Tor”, capitalizing only the first letter.[8] Tor directs Internet traffic through a free, worldwide, volunteer network consisting of more than seven thousand relays[9] to conceal a user’s … Continue reading Tor

Tor is free software for enabling anonymous communication. The name is an acronym derived from the original software project name The Onion Router,[7] however the correct spelling is “Tor”, capitalizing only the first letter.[8] Tor directs Internet traffic through a free, worldwide, volunteer network consisting of more than seven thousand relays[9] to conceal a user’s location and usage from anyone conducting network surveillance or traffic analysis. Using Tor makes it more difficult for Internet activity to be traced back to the user: this includes “visits to Web sites, online posts, instant messages, and other communication forms”.[10] Tor’s use is intended to protect the personal privacy of users, as well as their freedom and ability to conduct confidential communication by keeping their Internet activities from being monitored.

Onion routing is implemented by encryption in the application layer of a communication protocol stack, nested like the layers of anonion. Tor encrypts the data, including the destination IP address, multiple times and sends it through a virtual circuit comprising successive, randomly selected Tor relays. Each relay decrypts a layer of encryption to reveal only the next relay in the circuit in order to pass the remaining encrypted data on to it. The final relay decrypts the innermost layer of encryption and sends the original data to its destination without revealing, or even knowing, the source IP address. Because the routing of the communication is partly concealed at every hop in the Tor circuit, this method eliminates any single point at which the communicating peers can be determined through network surveillance that relies upon knowing its source and destination.

An adversary might try to de-anonymize the user by some means. One way this may be achieved is by exploiting vulnerable software on the user’s computer.[11] The NSA has a technique that targets outdated Firefox browsers codenamed EgotisticalGiraffe,[12] and targets Tor users in general for close monitoring under its XKeyscore program.[13] Attacks against Tor are an active area of academic research,[14][15] which is welcomed by the Tor Project itself.[16]

Theo Jansen’s Strandbeests

“A living being, but not alive.” The Dutchman artist Theo Jansen creates these structures which move through the strength of the winds. He uses wood, PET bottles and rags to transform wind energy in a synchronized motion that looks like their creations have a life of its own! Sensational! Posted by The Mind Unleashed on … Continue reading Theo Jansen’s Strandbeests

“A living being, but not alive.” The Dutchman artist Theo Jansen creates these structures which move through the strength of the winds. He uses wood, PET bottles and rags to transform wind energy in a synchronized motion that looks like their creations have a life of its own! Sensational!

Posted by The Mind Unleashed on Friday, November 28, 2014

ITIL

ITIL, formerly known as the Information Technology Infrastructure Library, is a set of practices for IT service management (ITSM) that focuses on aligning IT services with the needs of business. In its current form (known as ITIL 2011 edition), ITIL is published as a series of five core volumes, each of which covers a different … Continue reading ITIL

ITIL, formerly known as the Information Technology Infrastructure Library, is a set of practices for IT service management (ITSM) that focuses on aligning IT services with the needs of business. In its current form (known as ITIL 2011 edition), ITIL is published as a series of five core volumes, each of which covers a different ITSM lifecycle stage. Although ITIL underpins ISO/IEC 20000 (previously BS15000), the International Service Management Standard for IT service management, there are some differences between the ISO 20000 standard and the ITIL framework.

ITIL describes processes, procedures, tasks, and checklists which are not organization-specific, but can be applied by an organization for establishing integration with the organization’s strategy, delivering value, and maintaining a minimum level of competency. It allows the organization to establish a baseline from which it can plan, implement, and measure. It is used to demonstrate compliance and to measure improvement.

Since July 2013, ITIL has been owned by AXELOS Ltd, a joint venture between HM Cabinet Office and Capita Plc. AXELOS licenses organisations to use the ITIL intellectual property, accredits licensed Examination Institutes, and manages updates to the framework.

Solved game

From Wikipedia, the free encyclopedia A solved game is a game whose outcome (win, lose, or draw) can be correctly predicted from any position, given that both players play perfectly. Games which have not been solved are said to be “unsolved”. Games for which only some positions have been solved are said to be “partially … Continue reading Solved game

A solved game is a game whose outcome (win, lose, or draw) can be correctly predicted from any position, given that both players play perfectly. Games which have not been solved are said to be “unsolved”. Games for which only some positions have been solved are said to be “partially solved”. This article focuses on two-player games that have been solved.

A two-player game can be “solved” on several levels:[1][2]

Ultra-weak

Prove whether the first player will win, lose, or draw from the initial position, given perfect play on both sides. This can be a non-constructive proof (possibly involving astrategy-stealing argument) that need not actually determine any moves of the perfect play.

Weak

Provide an algorithm that secures a win for one player, or a draw for either, against any possible moves by the opponent, from the beginning of the game. That is, produce at least one complete ideal game (all moves start to end) with proof that each move is optimal for the player making it. It does not necessarily mean a computer program using the solution will play optimally against an imperfect opponent. For example, the checkers program Chinook will never turn a drawn position into a losing position (since the weak solution of checkers proves that it is a draw), but it might possibly turn a winning position into a drawn position because Chinook does not expect the opponent to play a move that will not win but could possibly lose, and so it does not analyze such moves completely.

Strong

Provide an algorithm that can produce perfect play (moves) from any position, even if mistakes have already been made on one or both sides.

Despite the name, many game theorists believe that “ultra-weak” are the deepest, most interesting and valuable proofs. “Ultra-weak” proofs require a scholar to reason about the abstract properties of the game, and show how these properties lead to certain outcomes if perfect play is realized.[citation needed]

By contrast, “strong” proofs often proceed by brute force — using a computer to exhaustively search a game tree to figure out what would happen if perfect play were realized. The resulting proof gives an optimal strategy for every possible position on the board. However, these proofs aren’t as helpful in understanding deeper reasons why some games are solvable as a draw, and other, seemingly very similar games are solvable as a win.

Given the rules of any two-person game with a finite number of positions, one can always trivially construct a minimax algorithm that would exhaustively traverse the game tree. However, since for many non-trivial games such an algorithm would require an infeasible amount of time to generate a move in a given position, a game is not considered to be solved weakly or strongly unless the algorithm can be run by existing hardware in a reasonable time. Many algorithms rely on a huge pre-generated database, and are effectively nothing more.

As an example of a strong solution, the game of tic-tac-toe is solvable as a draw for both players with perfect play (a result even manually determinable by schoolchildren). Games like nim also admit a rigorous analysis using combinatorial game theory.

Whether a game is solved is not necessarily the same as whether it remains interesting for humans to play. Even a strongly solved game can still be interesting if its solution is too complex to be memorized; conversely, a weakly solved game may lose its attraction if the winning strategy is simple enough to remember (e.g. Maharajah and the Sepoys). An ultra-weak solution (e.g. Chomp or Hex on a sufficiently large board) generally does not affect playability.

In non-perfect information games, one also has the notion of essentially weakly solved[3]. A game is said to be essentially weakly solved if a human lifetime of play is not sufficient to establish with statistical significance that the strategy is not an exact solution. As an example, the poker variation heads-up limit Texas hold ‘em have been essentially weakly solved by the poker bot Cepheus[3][4][5].

Perfect play

In game theory, perfect play is the behavior or strategy of a player that leads to the best possible outcome for that player regardless of the response by the opponent. Based on the rules of a game, every possible final position can be evaluated (as a win, loss or draw). By backward reasoning, one can recursively evaluate a non-final position as identical to that of the position that is one move away and best valued for the player whose move it is. Thus a transition between positions can never result in a better evaluation for the moving player, and a perfect move in a position would be a transition between positions that are equally evaluated. As an example, a perfect player in a drawn position would always get a draw or win, never a loss. If there are multiple options with the same outcome, perfect play is sometimes considered the fastest method leading to a good result, or the slowest method leading to a bad result.

Perfect play can be generalized to non-perfect information games, as the strategy that would guarantee the highest minimal expected outcome regardless of the strategy of the opponent. As an example, the perfect strategy for Rock, Paper, Scissors would be to randomly choose each of the options with equal (1/3) probability. The disadvantage in this example is that this strategy will never exploit non-optimal strategies of the opponent, so the expected outcome of this strategy versus any strategy will always be equal to the minimal expected outcome.

Although the optimal strategy of a game may not (yet) be known, a game-playing computer might still benefit from solutions of the game from certain endgame positions (in the form of endgame tablebases), which will allow it to play perfectly after some point in the game. Computer chess programs are well known for doing this.

Solved games

Awari (a game of the Mancala family)
The variant of Oware allowing game ending “grand slams” was strongly solved by Henri Bal and John Romein at the Vrije Universiteit in Amsterdam, Netherlands (2002). Either player can force the game into a draw.
Checkers
See “Draughts, English”
Chopsticks
The second player can always force a win.[6]
Connect Four
Solved first by James D. Allen (Oct 1, 1988), and independently by Victor Allis (Oct 16, 1988).[7] First player can force a win. Strongly solved by John Tromp’s 8-ply database[8](Feb 4, 1995). Weakly solved for all boardsizes where width+height is at most 15[7] (Feb 18, 2006).
Draughts, English (Checkers)
This 8×8 variant of draughts was weakly solved on April 29, 2007 by the team of Jonathan Schaeffer, known for Chinook, the “World Man-Machine Checkers Champion“. From the standard starting position, both players can guarantee a draw with perfect play.[9] Checkers is the largest game that has been solved to date, with a search space of 5×1020.[10] The number of calculations involved was 1014, which were done over a period of 18 years. The process involved from 200 desktop computers at its peak down to around 50.[11]

The game of checkers has roughly 500 billion billion possible positions (5 × 1020). The task of solving the game, determining the final result in a game with no mistakes made by either player, is daunting. Since 1989, almost continuously, dozens of computers have been working on solving checkers, applying state-of-the-art artificial intelligence techniques to the proving process. This paper announces that checkers is now solved: Perfect play by both sides leads to a draw. This is the most challenging popular game to be solved to date, roughly one million times as complex as Connect Four. Artificial intelligence technology has been used to generate strong heuristic-based game-playing programs, such as Deep Blue for chess. Solving a game takes this to the next level by replacing the heuristics with perfection.