Dunbar’s number

Dunbar’s number is a suggested cognitive limit to the number of people with whom one can maintain stable social relationships. These are relationships in which an individualknows who each person is and how each person relates to every other person.[1][2][3][4][5][6] This number was first proposed in the 1990s by British anthropologist Robin Dunbar, who found […]

Dunbar’s number is a suggested cognitive limit to the number of people with whom one can maintain stable social relationships. These are relationships in which an individualknows who each person is and how each person relates to every other person.[1][2][3][4][5][6] This number was first proposed in the 1990s by British anthropologist Robin Dunbar, who found a correlation between primate brain size and average social group size.[7] By using the average human brain size and extrapolating from the results of primates, he proposed that humans can only comfortably maintain 150 stable relationships.[8] Proponents assert that numbers larger than this generally require more restrictive rules, laws, and enforced norms to maintain a stable, cohesive group. It has been proposed to lie between 100 and 250, with a commonly used value of 150.[9][10] Dunbar’s number states the number of people one knows and keeps social contact with, and it does not include the number of people known personally with a ceased social relationship, nor people just generally known with a lack of persistent social relationship, a number which might be much higher and likely depends on long-term memory size.

Dunbar theorized that “this limit is a direct function of relative neocortex size, and that this in turn limits group size … the limit imposed by neocortical processing capacity is simply on the number of individuals with whom a stable inter-personal relationship can be maintained.” On the periphery, the number also includes past colleagues, such as high schoolfriends, with whom a person would want to reacquaint himself if they met again.[11]

Dunbar has argued that 150 would be the mean group size only for communities with a very high incentive to remain together. For a group of this size to remain cohesive, Dunbar speculated that as much as 42% of the group’s time would have to be devoted to social grooming. Correspondingly, only groups under intense survival pressure.

Dunbar, in Grooming, Gossip, and the Evolution of Language, proposes furthermore that language may have arisen as a “cheap” means of social grooming, allowing early humans to maintain social cohesion efficiently. Without language, Dunbar speculates, humans would have to expend nearly half their time on social grooming, which would have made productive, cooperative effort nearly impossible. Language may have allowed societies to remain cohesive, while reducing the need for physical and social intimacy.[12]

Dunbar’s number has since become of interest in anthropology, evolutionary psychology,[13] statistics, and business management. For example, developers of social software are interested in it, as they need to know the size of social networks their software needs to take into account; and in the modern military, operational psychologists seek such data to support or refute policies related to maintaining or improving unit cohesion and morale. A recent study has suggested that Dunbar’s number is applicable to online social networks[14][15] and communication networks (mobile phone).[16]

Philip Lieberman argues that since band societies of approximately 30-50 people are bounded by nutritional limitations to what group sizes can be fed without at least rudimentary agriculture, big human brains consuming more nutrients than ape brains, group sizes of approximately 150 cannot have been selected for in paleolithic humans.[20]Brains much smaller than human or even mammalian brains are also known to be able to support social relationships, including social insects with hierachies where each individual knows its place (such as the paper wasp with its societies of approximately 80 individuals [21]) and computer-simulated virtual autonomous agents with simple reaction programming emulating what is referred to in primatology as “ape politics”.[22]

Oxytocin

Gene switches make prairie voles fall in love Epigenetic changes affect neurotransmitters that lead to pair-bond formation. Zoe Cormier 02 June 2013 Adv Exp Med Biol. 1998;449:215-24. Oxytocin, vasopressin, and the neuroendocrine basis of pair bond formation. Insel TR1, Winslow JT, Wang Z, Young LJ. Author information Abstract Several lines of evidence support a role […]

Gene switches make prairie voles fall in love

Epigenetic changes affect neurotransmitters that lead to pair-bond formation.

02 June 2013


Adv Exp Med Biol. 1998;449:215-24.

Oxytocin, vasopressin, and the neuroendocrine basis of pair bond formation.

Abstract

Several lines of evidence support a role for oxytocin and vasopressin in complex social behaviors, including parental care, sex behavior, and aggression. Recent studies in a monogamous mammal, the prairie vole, suggest an additional role for both peptides in the formation of pair bonds. Central administration of oxytocin facilitates and administration of an oxytocin antagonist inhibits partner preference formation in female prairie voles. Conversely, vasopressin facilitates and a V1a receptor antagonist inhibits pair bonding in males. A potential cellular basis for these effects is the species-specific pattern of expression of oxytocin and V1a receptor in reward pathways of the prairie vole brain. At a molecular level, comparative sequencing of the oxytocin and V1a receptors reveals species differences in the promoter sequences that may guide regional expression in the brain. Transgenic mice created with the 5′ flanking region of the prairie vole oxytocin receptor gene demonstrate that sequencing in this region influence the pattern of expression within the brain. The unique promoter sequences of the prairie vole OTR and V1a receptor genes and the resulting species-specific pattern of regional expression provide a potential molecular mechanism for the evolution of pair bonding behaviors and a cellular basis for monogamy.


Oxytocin (Oxt) is a hormone, neuropeptide, and medication.[3][4] As a medication, it is used to cause contraction of the uterus in order to start labor or increase the speed of labor, and to stop bleeding following delivery.[3] For this purpose, it is given either byinjection into a muscle or into a vein.[3]

The use of oxytocin as a medication can result in excessive contraction of the uterus that can cause distress in an unborn baby. Common side effects in the mother include nausea and a slow heart rate. Serious side effects include water intoxication with an excessive dose and uterus rupture. Allergic reactions may also occur.[3]

Oxytocin is normally produced in the hypothalamus.[5][6] It plays a role in social bonding, sexual reproduction in both sexes, and during and after childbirth.[7] Oxytocin is released into the bloodstream as a hormone in response to stretching of the cervix anduterus during labor and with stimulation of the nipples from breastfeeding.[6] This helps with birth, bonding with the baby, and milk production.[6][8]

Oxytocin was discovered in 1952.[9] It is on the World Health Organization’s List of Essential Medicines, the most important medications needed in a basic health system.[10] As of 2014, the wholesale cost of the medication is US$0.1–0.56 per dose.[11]

Oxytocin has peripheral (hormonal) actions, and also has actions in the brain. Its actions are mediated by specific, oxytocin receptors. The oxytocin receptor is a G-protein-coupled receptor that requires magnesium and cholesterol. It belongs to therhodopsin-type (class I) group of G-protein-coupled receptors.

Studies have looked at oxytocin’s role in various behaviors, including orgasm, social recognition, pair bonding, anxiety, and maternal behaviors.[12]

The peripheral actions of oxytocin mainly reflect secretion from the pituitary gland. The behavioral effects of oxytocin are thought to reflect release from centrally projecting oxytocin neurons, different from those that project to the pituitary gland, or that are collaterals from them.[13] Oxytocin receptors are expressed by neurons in many parts of the brain and spinal cord, including the amygdala,ventromedial hypothalamus, septum, nucleus accumbens, and brainstem.

  • Letdown reflex: In lactating (breastfeeding) mothers, oxytocin acts at the mammary glands, causing milk to be ‘let down’ intosubareolar sinuses, from where it can be excreted via the nipple.[14] Suckling by the infant at the nipple is relayed by spinal nerves to the hypothalamus. The stimulation causes neurons that make oxytocin to fire action potentials in intermittent bursts; these bursts result in the secretion of pulses of oxytocin from the neurosecretory nerve terminals of the pituitary gland.
  • Uterine contraction: Important for cervical dilation before birth, oxytocin causes contractions during the second and third stages oflabor. Oxytocin release during breastfeeding causes mild but often painful contractions during the first few weeks of lactation. This also serves to assist the uterus in clotting the placental attachment point postpartum. However, in knockout mice lacking the oxytocin receptor, reproductive behavior and parturition are normal.[15]
  • Social behavior[16][17] and wound healing: Oxytocin is also thought to modulate inflammation by decreasing certain cytokines. Thus, the increased release in oxytocin following positive social interactions has the potential to improve wound healing. A study by Marazziti and colleagues used heterosexual couples to investigate this possibility. They found increases in plasma oxytocin following a social interaction were correlated with faster wound healing. They hypothesized this was due to oxytocin reducing inflammation, thus allowing the wound to heal more quickly. This study provides preliminary evidence that positive social interactions may directly influence aspects of health.[18] According to a study published in 2014, silencing of oxytocin receptor interneurons in the medial prefrontal cortex (mPFC) of female mice resulted in loss of social interest in male mice during the sexually receptive phase of the estrous cycle.[19]
Oxytocin evokes feelings of contentment, reductions in anxiety, and feelings of calmness and security when in the company of the mate.[20] This suggests oxytocin may be important for the inhibition of the brain regions associated with behavioral control, fear, and anxiety, thus allowing orgasm to occur. Research has also demonstrated that oxytocin can decrease anxiety and protect against stress, particularly in combination with social support.[21]
  • Due to its similarity to vasopressin, it can reduce the excretion of urine slightly. In several species, oxytocin can stimulate sodium excretion from the kidneys (natriuresis), and, in humans, high doses can result in hyponatremia.
  • Oxytocin and oxytocin receptors are also found in the heart in some rodents, and the hormone may play a role in the embryonal development of the heart by promotingcardiomyocyte differentiation.[22][23] However, the absence of either oxytocin or its receptor in knockout mice has not been reported to produce cardiac insufficiencies.[15]
  • Modulation of hypothalamic-pituitary-adrenal axis activity: Oxytocin, under certain circumstances, indirectly inhibits release of adrenocorticotropic hormone and cortisol and, in those situations, may be considered an antagonist of vasopressin.[24]
  • Autism: Oxytocin may play a role in autism and may be an effective treatment for autism‘s repetitive and affiliative behaviors.[25] Oxytocin treatments also resulted in an increased retention of affective speech in adults with autism.[26] Two related studies in adults, in 2003 and 2007, found oxytocin decreased repetitive behaviors and improved interpretation of emotions. More recently, intranasal administration of oxytocin was found to increase emotion recognition in children as young as 12 who are diagnosed with autism spectrum disorders.[27] Oxytocin has also been implicated in the etiology of autism, with one report suggesting autism is correlated with genomic deletion of the gene containing the oxytocin receptor gene (OXTR). Studies involving Caucasian and Finnish samples and Chinese Han families provide support for the relationship of OXTR with autism.[26][28] Autism may also be associated with an aberrant methylation of OXTR.[26] After treatment with inhaled oxytocin, autistic patients exhibit more appropriate social behavior.[29] While this research suggests some promise, further clinical trials of oxytocin are required to demonstrate potential benefit and side effects in the treatment of autism. As such, researchers do not recommend use of oxytocin as a treatment for autism outside of clinical trials.[30]
  • Nasally administered oxytocin has also been reported to reduce fear, possibly by inhibiting the amygdala (which is thought to be responsible for fear responses).[31] Indeed, studies in rodents have shown oxytocin can efficiently inhibit fear responses by activating an inhibitory circuit within the amygdala.[32][33] Some researchers have argued oxytocin has a general enhancing effect on all social emotions, since intranasal administration of oxytocin also increases envy and Schadenfreude.[34]
  • Trust is increased by oxytocin.[35][36][37] Disclosure of emotional events is a sign of trust in humans. When recounting a negative event, humans who receive intranasaloxytocin share more emotional details and stories with more emotional significance.[36] Humans also find faces more trustworthy after receiving intranasal oxytocin. In a study, participants who received intranasal oxytocin viewed photographs of human faces with neutral expressions and found them to be more trustworthy than those who did not receive oxytocin.[35] This may be because oxytocin reduces the fear of social betrayal in humans.[38] Even after experiencing social alienation by being excluded from a conversation, humans who received oxytocin scored higher in trust on the Revised NEO Personality Inventory.[37] Moreover, in a risky investment game, experimental subjects given nasally administered oxytocin displayed “the highest level of trust” twice as often as the control group. Subjects who were told they were interacting with a computer showed no such reaction, leading to the conclusion that oxytocin was not merely affecting risk aversion.[39] When there is a reason to be distrustful, such as experiencing betrayal, differing reactions are associated with oxytocin receptor gene (OXTR) differences. Those with the CT haplotype experience a stronger reaction, in the form of anger, to betrayal.[40]
  • Oxytocin affects social distance between adult males and females, and may be responsible at least in part for romantic attraction and subsequent monogamous pair bonding. An oxytocin nasal spray caused men in a monogamous relationship, but not single men, to increase the distance between themselves and an attractive woman during a first encounter by 10 to 15 centimeters. The researchers suggested that oxytocin may help promote fidelity within monogamous relationships.[41] For this reason, it is sometimes referred to as the “bonding hormone”. There is some evidence that oxytocin promotes ethnocentric behavior, incorporating the trust and empathy of in-groups with their suspicion and rejection of outsiders.[16] Furthermore, genetic differences in the oxytocin receptor gene (OXTR) have been associated with maladaptive social traits such as aggressive behaviour.[42]
  • Affecting generosity by increasing empathy during perspective taking: In a neuroeconomics experiment, intranasal oxytocin increased generosity in the Ultimatum Game by 80%, but had no effect in the Dictator Game that measures altruism. Perspective-taking is not required in the Dictator Game, but the researchers in this experiment explicitly induced perspective-taking in the Ultimatum Game by not identifying to participants into which role they would be placed.[43] Serious methodological questions have arisen, however, with regard to the role of oxytocin in trust and generosity.[44]
Empathy in healthy males has been shown to be increased after intranasal oxytocin[45][46] This is most likely due to the effect of oxytocin in enhancing eye gaze.[47] There is some discussion about which aspect of empathy oxytocin might alter – for example, cognitive vs. emotional empathy.[48]
  • Certain learning and memory functions are impaired by centrally administered oxytocin.[49] Also, systemic oxytocin administration can impair memory retrieval in certain aversive memory tasks.[50] Interestingly, oxytocin does seem to facilitate learning and memory specifically for social information. Healthy males administered intranasal oxytocin show improved memory for human faces, in particular happy faces.[51][52] They also show improved recognition for positive social cues over threatening social cues[53][54] and improved recognition of fear.[55]
  • Sexual activity: The relationship between oxytocin and human sexual response is unclear. At least two uncontrolled studies have found increases in plasma oxytocin at orgasm – in both men and women.[56][57] Plasma oxytocin levels are notably increased around the time of self-stimulated orgasm and are still higher than baseline when measured five minutes after self arousal.[56] The authors of one of these studies speculated that oxytocin’s effects on muscle contractibility may facilitate sperm and egg transport.[56]
In a study measuring oxytocin serum levels in women before and after sexual stimulation, the author suggests it serves an important role in sexual arousal. This study found genital tract stimulation resulted in increased oxytocin immediately after orgasm.[58] Another study reported increases of oxytocin during sexual arousal could be in response to nipple/areola, genital, and/or genital tract stimulation as confirmed in other mammals.[59] Murphy et al. (1987), studying men, found oxytocin levels were raised throughout sexual arousal with no acute increase at orgasm.[60] A more recent study of men found an increase in plasma oxytocin immediately after orgasm, but only in a portion of their sample that did not reach statistical significance. The authors noted these changes “may simply reflect contractile properties on reproductive tissue”.[61]
  • Bonding: In the prairie vole, oxytocin released into the brain of the female during sexual activity is important for forming a monogamous pair bond with her sexual partner. Vasopressin appears to have a similar effect in males.[62] Oxytocin has a role in social behaviors in many species, so it likely also does in humans. In a 2003 study, both humans and dog oxytocin levels in the blood rose after five to 24 minutes of a petting session. This possibly plays a role in the emotional bonding between humans and dogs.[63]
  • Maternal behavior: Female rats given oxytocin antagonists after giving birth do not exhibit typical maternal behavior.[64] By contrast, virgin female sheep show maternal behavior toward foreign lambs upon cerebrospinal fluid infusion of oxytocin, which they would not do otherwise.[65] Oxytocin is involved in the initiation of maternal behavior, not its maintenance; for example, it is higher in mothers after they interact with unfamiliar children rather than their own.[66]
  • Drug interactions: According to some studies in animals, oxytocin inhibits the development of tolerance to various addictive drugs (opiates, cocaine, alcohol), and reduceswithdrawal symptoms.[67] MDMA (ecstasy) may increase feelings of love, empathy, and connection to others by stimulating oxytocin activity primarily via activation of serotonin5-HT1A receptors, if initial studies in animals apply to humans.[68] The anxiolytic Buspar (buspirone) may produce some of its effects via 5-HT1A receptor-induced oxytocin stimulation as well.[69][70]
  • Preparing fetal neurons for delivery: Crossing the placenta, maternal oxytocin reaches the fetal brain and induces a switch in the action of neurotransmitter GABA from excitatory to inhibitory on fetal cortical neurons. This silences the fetal brain for the period of delivery and reduces its vulnerability to hypoxic damage.[71]
  • Romantic attachment: In some studies, high levels of plasma oxytocin have been correlated with romantic attachment. For example, if a couple is separated for a long period of time, anxiety can increase due to the lack of physical affection. Oxytocin may aid romantically attached couples by decreasing their feelings of anxiety when they are separated.[20]
  • Feeding: Recent evidence has suggested that oxytocin neurons in the para-ventricular hypothalamus in the brain may play a key role in suppressing appetite under normal conditions and that other hypothalamic neurons may trigger eating via inhibition of these oxytocin neurons. This population of oxytocin neurons are absent in Prader-Willi syndrome, a genetic disorder that leads to uncontrollable feeding and obesity, and may play a key role in its pathophysiology.[72]
  • Group-serving dishonesty/deception: In a carefully controlled study exploring the biological roots of immoral behavior, oxytocin was shown to promote dishonesty when the outcome favored the group to which an individual belonged instead of just the individual.[73]
  • Intergroup bonding: Oxytocin can increase positive attitudes, such as bonding, toward individuals with similar characteristics, who then become classified as “in-group” members, whereas individuals who are dissimilar become classified as “out-group” members. Race can be used as an example of in-group and out-group tendencies because society often categorizes individuals into groups based on race (Caucasian, African American, Latino, etc.). One study that examined race and empathy found that participants receiving nasally administered oxytocin had stronger reactions to pictures of in-group members making pained faces than to pictures of out-group members with the same expression.[74] This shows that oxytocin may be implicated in our ability to empathize with individuals of different races and could potentially translate into willingness to help individuals in pain or stressful situations. Moreover, individuals of one race may be more inclined to help individuals of the same race than individuals of another race when they are experiencing pain. Oxytocin has also been implicated in lying when lying would prove beneficial to other in-group members. In a study where such a relationship was examined, it was found that when individuals were administered oxytocin, rates of dishonesty in the participants’ responses increased for their in-group members when a beneficial outcome for their group was expected.[75] Both of these examples show the tendency to act in ways that benefit people with which one feels is part of their social group, or in-group. Oxytocin is not only correlated with the preferences of individuals to associate with members of their own group, but it is also evident during conflicts between members of different groups. During conflict, individuals receiving nasally administered oxytocin demonstrate more frequent defense-motivated responses toward in-group members than out-group members. Further, oxytocin was correlated with participant desire to protect vulnerable in-group members, despite that individual’s attachment to the conflict.[76] Similarly, it has been demonstrated that when oxytocin is administered, individuals alter their subjective preferences in order to align with in-group ideals over out-group ideals.[77] These studies demonstrate that oxytocin is associated with intergroup dynamics. Further, oxytocin influences the responses of individuals in a particular group to those of another group. The in-group bias is evident in smaller groups; however, it can also be extended to groups as large as one’s entire country leading toward a tendency of strong national zeal. A study done in the Netherlands showed that oxytocin increased the in-group favoritism of their nation while decreasing acceptance of members of other ethnicities and foreigners.[16] People also show more affection for their country’s flag while remaining indifferent to other cultural objects when exposed to oxytocin.[78] It has thus been hypothesized that this hormone may be a factor in xenophobic tendencies secondary to this effect. Thus, oxytocin appears to affect individuals at an international level where the in-group becomes a specific “home” country and the out-group grows to include all other countries.

Fit not Fat

Obesity and the Economics of Prevention
Fit not Fat
DOI:10.1787/9789264084865-en
This book examines the scale and characteristics of the obesity epidemic, the respective roles and influence of market forces and governments, and the impact of interventi…

Obesity and the Economics of Prevention

Fit not Fat

DOI:10.1787/9789264084865-en

This book examines the scale and characteristics of the obesity epidemic, the respective roles and influence of market forces and governments, and the impact of interventions.

Childhood Overweight and Obesity

The Consequences of Childhood Overweight and Obesity
Stephen R. Daniels

Journal: The Future of Children
Volume 16, Number 1, Spring 2006
pp. 47-67 | 10.1353/foc.2006.0004

The Consequences of Childhood Overweight and Obesity

Journal: The Future of Children
Volume 16, Number 1, Spring 2006
pp. 47-67 | 10.1353/foc.2006.0004

Obesity Among Swedish Men

No Country for Fat Men? Obesity, Earnings, Skills, and Health Among 450,000 Swedish Men Petter Lundborg Lund University School of Economics and Management; Tinbergen Institute; Institute for the Study of Labor (IZA) Paul Nystedt Linkoping University Dan-Olof Rooth University of Kalmar; Institute for the Study of Labor (IZA) IZA Discussion Paper No. 4775 Abstract: The […]


Petter Lundborg


Lund University School of Economics and Management; Tinbergen Institute; Institute for the Study of Labor (IZA)

Paul Nystedt


Linkoping University

Dan-Olof Rooth


University of Kalmar; Institute for the Study of Labor (IZA)

IZA Discussion Paper No. 4775
Abstract:

The negative association between obesity and labor market outcomes has been widely documented, yet little is known about the mechanisms through which the association arises. Using rich and unique data on 450,000 Swedish men enlisting for the military, we find that the crude obesity penalty in earnings, which amounts to about 18 percent, is linked to supply-side characteristics that are associated with both earnings and obesity. In particular, we show that the penalty reflects negative associations between obesity, on the one hand, and cognitive skills, non-cognitive skills, and physical fitness, on the other. Our results suggest that employers use obesity as a marker for skill limitations in order to statistically discriminate.

Number of Pages in PDF File: 41

Keywords: obesity, overweight, earnings, cognitive ability, non-cognitive ability, health, physical fitness

JEL Classification: I10, J10, J70

overweight and obesity are challenges among primary school children

Prevalence and Implications of Overweight and Obesity in Children’s Health and Learning Behavior: The Case of Kinondoni and Njombe Districts in Tanzania Kafyulilo, Ayoub Cherd Online Submission, M.A. Dissertation, University of Dar es Salaam The purpose of this study was to investigate the extent to which overweight and obesity are challenges among primary school children […]

Kafyulilo, Ayoub Cherd
Online Submission, M.A. Dissertation, University of Dar es Salaam
The purpose of this study was to investigate the extent to which overweight and obesity are challenges among primary school children in Kinondoni and Njombe districts. The study sought to investigate those aspects in terms of prevalence, causes and impacts on social, health as well as children learning behaviours and outcomes. Systematic random sampling was used to select schools while stratified sampling and simple random sampling were used in selecting pupils and teachers. Measurement of weights and height were done to determine Body Mass Index (BMI), measurements of skinfolds were also done to determine body fat percentage. Questionnaires, semi-structured interview schedule and focus group discussion guides were also used. Findings revealed an average of 13.5% children, were overweight and obese. Economy status, household occupations, nutrition and inactivity were significant causes of overweight and obesity. Hypertension, excessive sweating, teasing and peer rejection were common to obese children. In addition, overweight and obese children were reported to underperform in academic and physical activities. The study revealed that overweight and obesity were not friendly healthy conditions to children, thus a need to work it out. The study suggests for establishment of education programs through mass Medias, to raise people’s awareness on implications of obesity in children’s health, social, and learning behaviours and outcomes. Seven appendixes are included: (1) Pupils’ Questionnaires; (2) Pupils’ Focus Group Discussion Guide; (3) Teachers’ Interviews; (4) Number of Children and their Weight Status in both Rural and Urban Settings (BMI Results); (5) Percentage of Children According to their Weight Status and Performance Grades in the Classroom; (6) Factors Causing Overweight and Obesity among School Children and their Level of Significance; and (7) A Map of Kinondoni and Njombe Showing the Surveyed Schools. (Contains 12 tables and 11 figures.) [Funding for this study was provided by the Dar es Salaam University College of Education.]

Progesterone

Progesterone (abbreviated as P4), also known as pregn-4-ene-3,20-dione,[5][6] is an endogenous steroid and progestogen sex hormone involved in the menstrual cycle, pregnancy, and embryogenesis of humans and other species.[7] It belongs to a group of steroid hormones called the progestogens,[7] and is the major progestogen in the body. Progesterone is also a crucial metabolic intermediate […]

Progesterone (abbreviated as P4), also known as pregn-4-ene-3,20-dione,[5][6] is an endogenous steroid and progestogen sex hormone involved in the menstrual cycle, pregnancy, and embryogenesis of humans and other species.[7] It belongs to a group of steroid hormones called the progestogens,[7] and is the major progestogen in the body. Progesterone is also a crucial metabolic intermediate in the production of other endogenous steroids, including the sex hormones and the corticosteroids, and plays an important role in brain function as a neurosteroid.[8]

It is on the WHO Model List of Essential Medicines, the most important medications needed in a basic health system.[9]

Barbara McClintock

Barbara McClintock (June 16, 1902 – September 2, 1992) was an American scientist and cytogeneticist who was awarded the 1983 Nobel Prize in Physiology or Medicine. McClintock received her PhD in botany from Cornell University in 1927. There she started her career as the leader in the development of maize cytogenetics, the focus of her […]

Barbara McClintock (June 16, 1902 – September 2, 1992) was an American scientist and cytogeneticist who was awarded the 1983 Nobel Prize in Physiology or Medicine. McClintock received her PhD in botany from Cornell University in 1927. There she started her career as the leader in the development of maize cytogenetics, the focus of her research for the rest of her life. From the late 1920s, McClintock studied chromosomes and how they change during reproduction in maize. She developed the technique for visualizing maize chromosomes and used microscopic analysis to demonstrate many fundamental genetic ideas. One of those ideas was the notion of genetic recombination by crossing-over during meiosis—a mechanism by which chromosomes exchange information. She produced the first genetic map for maize, linking regions of the chromosome to physical traits. She demonstrated the role of the telomere and centromere, regions of the chromosome that are important in the conservation of genetic information. She was recognized among the best in the field, awarded prestigious fellowships, and elected a member of the National Academy of Sciences in 1944.

During the 1940s and 1950s, McClintock discovered transposition and used it to demonstrate that genes are responsible for turning physical characteristics on and off. She developed theories to explain the suppression and expression of genetic information from one generation of maize plants to the next. Due to skepticism of her research and its implications, she stopped publishing her data in 1953.

Later, she made an extensive study of the cytogenetics and ethnobotany of maize races from South America. McClintock’s research became well understood in the 1960s and 1970s, as other scientists confirmed the mechanisms of genetic change and genetic regulation that she had demonstrated in her maize research in the 1940s and 1950s. Awards and recognition for her contributions to the field followed, including the Nobel Prize in Physiology or Medicine, awarded to her in 1983 for the discovery of genetic transposition; she is the only woman to receive an unshared Nobel Prize in that category.[1]

Evolution

Microevolution happens on a small scale (within a single population), while macroevolution happens on a scale that transcends the boundaries of a single species. Despite their differences, evolution at both of these levels relies on the same, establish…

Microevolution happens on a small scale (within a single population), while macroevolution happens on a scale that transcends the boundaries of a single species. Despite their differences, evolution at both of these levels relies on the same, established mechanisms of evolutionary change:

Epigenetics

Epigenetics (from Ancient Greek επί/epi = ‘upon’, ‘over’, ‘above’ and γενετικός/genetikos = ‘genitive’ > γενεά/genea = ‘generation’ > γεννώ/geno = ‘birth to’ > γένεσις/genesis = ‘origin’) is the study, in the field of genetics, of cellular and physiological phenotypic trait variations that are caused by external orenvironmental factors that switch genes on and off and […]

Epigenetics (from Ancient Greek ???/epi = ‘upon’, ‘over’, ‘above’ and ?????????/genetikos = ‘genitive’ > ?????/genea = ‘generation’ > ?????/geno = ‘birth to’ > ???????/genesis = ‘origin’) is the study, in the field of genetics, of cellular and physiological phenotypic trait variations that are caused by external orenvironmental factors that switch genes on and off and affect how cells read genes instead of being caused by changes in the DNA sequence.[1][2] Hence, epigenetic research seeks to describe dynamic alterations in the transcriptional potential of a cell. These alterations may or may not be heritable, although the use of the term “epigenetic” to describe processes that are not heritable is controversial.[3] Unlike genetics based on changes to the DNA sequence (the genotype), the changes in gene expression or cellular phenotype of epigenetics have other causes, thus use of the prefix epi-(Greek: ???– over, outside of, around).[4][5]

The term also refers to the changes themselves: functionally relevant changes to the genome that do not involve a change in the nucleotide sequence. Examples of mechanisms that produce such changes are DNA methylation and histone modification, each of which alters how genes are expressed without altering the underlying DNA sequence. Gene expression can be controlled through the action of repressor proteins that attach to silencer regions of the DNA. These epigenetic changes may last through cell divisions for the duration of the cell’s life, and may also last for multiple generations even though they do not involve changes in the underlying DNA sequence of the organism;[6] instead, non-genetic factors cause the organism’s genes to behave (or “express themselves”) differently.[7]

One example of an epigenetic change in eukaryotic biology is the process of cellular differentiation. During morphogenesis, totipotent stem cells become the various pluripotentcell lines of the embryo, which in turn become fully differentiated cells. In other words, as a single fertilized egg cell – the zygote – continues to divide, the resulting daughter cells change into all the different cell types in an organism, including neurons, muscle cells, epithelium, endothelium of blood vessels, etc., by activating some genes while inhibiting the expression of others.[8]